ON THE HYPERGEOMETRIC CURVE

EXPRESSED BY THE EQUATION
y:123x*

Leonhard Euler

1. While here the letter x denotes the abscissa and y the ordinate, this equa-
tion immediately indicates the quantity only of those ordinates corresponding
to integer numbers; for, if one had

the abscissas x--- 0, 1, 2, 3, 4, 5, 6 etc
one will have

the ordinatesy--- 1, 1, 2, 6, 24, 120, 720 etc.

so that, while the abscissas are taken according to the natural numbers, the
ordinates proceed according to the Wallisian hypergeometric progression;
therefore, it will be convenient to call also this curve hypergeometric. But
even though through this equation just innumerable, but a discrete set of,
points of this curve are assigned, nevertheless the nature of this curve is to be
considered to be determined by this equation, so that to each abscissa a certain,
and via this equation, well-defined ordinate corresponds. For, the nature of
this equation requires that, if to a certain abscissa x = p the ordinate y = g
corresponds, that then to the abscissa x = p + 1 the ordinate y = g(p + 1)

*Original Title: “De curva hypergeometrica hac aequatione expressay =1-2-3- - x“, first
published in Novi Commentarii academiae scientiarum Petropolitanae 13, 1769, pp. 3-66,
reprint in: Opera Omnia: Series 1, Volume 28, pp. 41 - 98, Enestrom-Number E368, translated
by: Alexander Aycock for the project ,Euler-Kreis Mainz”



corresponds, but to the abscissa x = p — 1 the ordinate y = %. Therefore, one
can not draw a certain curve of parabolic kind through this infinitely many
points arbitrarily, since all its points are determined from the equation.

2. But except these ordinates corresponding to abscissas expressed by integer
numbers, those are especially noteworthy, which fall into the middle between
them from the equation; and all are determined by the one I once showed to
correspond to the abscissa x = J and to be equal to 3+/7t. Therefore, since

VT = 1.77245385090548,

all these ordinates so for the positive as for the negative abscissas will be as
follows:
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From this I drew the curve seen in figure 1, which extends from the negative
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Fig. 1
Figure 1 from E368. It shows the factorial function from x = —1 to x = 3. Euler uses Roman

numbers to denote the abscissas.

The scan was taken from the Opera Onmia Version, i.e. p. 44 of volume 28 of the first series.

where the ordinate becomes infinite, to x = 3, where y = 6, and from this
point on is to be understood to ascend to infinity; but the values on the
left, where for each integer value of the abscissa the ordinates go over into
asymptotes, I did not expresses beyond x = —1.

3. The consideration of this curve raises many rather curious questions,
providing a reason to examine it more accurately; and their solution seem to
be even more interesting, since the equation for our curve can not be expressed



in usual manner. Questions of this kind first concern the determination of
the remaining points of a curve aside from those which are easily assigned.
After this, in each point the tangents require an own investigation, so that the
behaviour of the whole curve can be defined more easily. But the from the
inspection of the figure it is perspicuous that between the abscissas x = 0 and
x = 1 there must be a smallest ordinate somewhere: to assign so its abscissa
as its value will be worth one’s while.

Furthermore, between each two negative abscissas —1, —2, —3, —4, —5 etc.,
where the ordinates extend to infinity, there necessarily are smallest ordinates,
which, the more we proceed to the left, become continuously smaller until
eventually they vanish completely. Finally, also the question on the curvature
radius in each point deserves our attention, and the point, where the curvature
is the largest, seems to be especially remarkable, since it is manifest that in the
elongation of the curve from the axis the branches come continuously closer
to the straight line. Thus, I want to resolve those questions.

FIRST QUESTION

To find a continuous equation among the abscissa x and the ordinate y for the
hypergeometric curve, which equally holds, no matter whether for x an integer or a
fractional number is taken.

4. Since the propounded equation y = 1-2-3---x can only hold if x is
an integer number, it must be cast into another form which is not restricted
by this condition; this can be achieved in multiple ways using expressions
running to infinity, among which at first this one occurs:

B 1 %x 2 §x 3 éx 4 §xetc
Y=15x\1) 25x\2) 35x\3) ‘125z \a ‘

which factors must be continued to infinity. The reason for the validity of this
expression is obvious, since, the more factors are taken, the closer the true
value is obtained, and, having taken infinitely many factors, the true value is
obtained accurately: For, if the numbers of factors is = 1, one has

1 2 3 n
1+x 2+4+x 3+x n—+x

if whose numerator is represented this way:

(n+1)%,

y:



1-2-3---x(x+1)(x+2)(x+3)---n,

the denominator on the other hand this way

14+x)2+x)B3+x)---n(n+1)(n+2)---(n+x),
having cancelled the common factors, it results
1.2-3...x
(m+1)(n+2)(n+3)---(n+x)

Hence, if n is an infinite number, because of the n + 1 single factors and
the total amount of x factors of the denominator, the whole denominator is
cancelled by the factor (14 1)* and the propounded equationy =1-2-3-- - x.

y= (n+1)".

5. This formula can be generalised a bit; for, since the whole task reduces to
this that the factor (n 4+ 1)* becomes equal to the last denominator

(n+1)(n+2)(n+3)---(n+x),

in the case, in which # is an infinite number, it is evident that this condition
is also satisfied, if the factor is in general set (n+a)*, while a is an arbitrary
finite number; but this formula is most appropriate for our task, if a certain
mean value of 1 and x, e.g. a = 1% or a = +/x, is attributed to 4. Now it
is necessary that this factor (n 4 a)* is resolved into so many factors as n
contains units, which is conveniently achieved using this resolution:

v . (a+1\" fa+2\" [a+3\" a+n \*
(n+g) =qa - . . - .
a a+1 a+2 a+n—1

Therefore, for an arbitrary abscissa x we will have the ordinate:

=a* 1 a+1 x, 2 a+2 x. 3 a+3 x-etc to infinit
Y= 175% U a 2+x\a+1) 3+x\a+2 ' "

which expression is always true, whatever number is chosen for 4, but leads

to the truth most quickly, if one takes ¢ = 11X, whence it will be:




C(1+x\" 1 (34x\" 2 [(54+x\" 3 [(7+x xem
¥y=\ T+x\1+x) 2+x\351x/) 3+x\5+x v

which expression consists of infinitely many factors of the form

m a+m \*
m+x\a—m-—1

except the first a¥, and the more are multiplied by each other in a given case,
the closer one will get to the truth. But the initial expression results, if one
takesa = 1.

6. But this expression is the more useful, the faster the factors converge
to one, which happens by taking 2 = 13*; indeed, then the calculation will
become the easier the smaller numbers are substituted for x; but it always
suffices to have investigated ordinates for abscissas x between one and zero,
since hence the ordinates corresponding to x +1, x +2, x + 3, x + 4 etc. are

easily derived. Therefore, let x = %, while a < B, and it will be

o= () ) G i) o () e

whence the power y# of the ordinate results expressed this way:

O A L R
P28 ot @B+aPEpra)r (p+aP(Gtar
But for the abscissa x = —% the ordinate is hence calculated to be
WY I N RS S S

B—a) (B—a)P(3f—a) (2B—a)P(58—a)* (3—a)f(7—a)®

For the sake of an example let us take x = } and we will obtain:
» 32:2-7 4-4-11 6:6-15 8-8-19
Y 74333557 7711 9.9-15
since a general factor of which is

etc,,




2n-2n(4n+3) _len®+12nn 1+ 1
2n+1)2n+1)(4n—1)  16n®+12nn—1 (2n+1)2(4n —1)’

hence it is seen in general, how quickly these factors converge to 1; therefore,
it will be:

3 1 1 1 1 1

2

1 1 1 1 14— et
Y <+32 3)<+52 ><+ 11)(+92 15><+112-19>ec'

where we know that y> = Z. But if we put x = —3, to whichy = /=7
corresponds, from the other expression it will be

. 2.2-1 4-4.5 6-6-9 8-8-13 etc
-~ 1-1-5 3-3-9 5.5.13 7-7-17 ’

1 1 1 1
—4(1- ) (1-—)(1- 1-
& < 12-5>< 32'9>< 52. 13>< 72, 17> ete.

hence

1 1 1 1
—3(1+ ) (14— (1 1 tc.,
& <+32-3>(+52~7><+7211><+9215>eC

so that the one expression will get to the truth while increasing, the other
while decreasing.

or

7. But the calculation is executed more conveniently, if our expression is ter-
minated at each factor; for, then the following formulas coming continuously
closer to the truth will result:



y:

y:

y:

y:

y:

Since, if one writes x — 1 instead of x, the ordinate =

1

1

3+ x\"
1+ x 2

1

2 54+x\%
1+x 2+4+x 2

1

2 3 74+x\"
1+x 2+x 3+x 2

1

2 3 4
1+x 2+x 3+x 4+x

2 3 4

2
5

9—|—x)x

1+x 2+x 3+x 4+x 5+x

formulas it will be

2
¥

()

results, by similar

y:
2 [4+x\"!
YTira\ 2
2 3 (6+x\""
YT irx 242\ 2
2 3 8+x
y= 1+x 2+x 3—|—x 2
2 3 5 O+x
y= 1+x 2+x 3+x At
Hence, having put x = % for the ordinate y = %\f two series of formulas

converging to it result:
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8. But products of this kind are most conveniently expanded using loga-
rithms; and first from the general formula involving the arbitrary number a
we obtain:

a+4
a+3

a+3
a—+2

a+1 a+?2
1
a +xoga+1

+ etc.

+ xlog

logy = xloga + xlog + xlog

x x x
—log(1+x) — log (1 + E) — log (1 + §> —log (1 + Z> — etc.
and, having taken a = 1%, that this series is rendered most convergent:

x+5 x+7 x+9

1
] ]
3 TYe8 sl

logy = xlog —;

+ etc.

x+xb X 3+xb
gx+1 &

log(1+x) — log (1 + g) — log <1 + g) — log <1 + Z) — etc.

Therefore, having taken these logarithms, since in general:

10



x—i—2m—|—1_ 2x 2x 2x 2x

1 = tc.
PO T om—1" x+2m * 3(x+2m)3 + 5(x +2m)> + 7(x +2m)7 ete
and lo (1 + i) - + 2¢° + 27 + 2 + etc

& m/)  x+2m = 3(x+2m)3>  5(x+2m)> = 7(x+2m)? '

we obtain the following formulas consisting of infinitely many series:

1ogy—xlog1;x+§x(1—xx)<(x+12)s (x+14)3 (xj6)3 (x+18>3
+§x<1‘xé)<<x+12>7 Al A

9. Let us take a definite number of terms of the first series, which number
we want to be = 1, and since the upper part is reduced to the single term
xlog(a + n), it will be

logy = xlog(a+x) —log(1+x)—log (1+ ;x) —log (1—1—;95) —---—log <1+ ix) ,

which expression comes the closer to the truth, the greater the number # is
taken. Therefore, let n be very large, and first we will obviously have

1 _ a aa a3
Og(l’l+ﬂ) = ogn+ﬁ—ﬁ+@—
where it will be convenient to take HTX for a; but then, for the sake of brevity,
having put the fraction

etc.,

11



0.5772156649015325 = A,

we know the sum of the harmonic progression to be:

1 1 1 1 1 1 1
1+—+7+7+---+E:A+logn+f

27374 on 12nn T 120mE %

whence, since:

lo(n-l—a)—l-l—l-l-l-l-l-l— -I—l—A—i-I-L—L
& T I n on " 12nn 120n%

a aa a’

+-——+

—F — etc,,
n  2nn = 3n

having taken a = ”Tx, we conclude

1 ——Ax+x+1x+1x+ +1x
08y = 273 n

_log(1+x)—10g<1+;x> —10g<1+;x> —---—log(l—#ix)

xx x4+ 6xx+3x°
=TT L ete
+2n 24nn tete

Therefore, by increasing the number 7 to infinity, it will actually be:

1

1
3x + 1x —+ etc.

1
logy:—Ax+x—|—§x—|—

—log(1+x) —log <1 + ;x> —log (1 + ;x) —log (1 + ix) — etc.

and, having expanded each logarithm into a series:

12

—+ etc.



1
logy = —Ax + - xx

10. But except those formulas, in which the ordinate y corresponding to a
certain abscissa x is assigned, my method to sum progressions indefinitely
provides us with an extraordinary expression accommodated to our purposes.
For, since logy = log1 +1log2 +1log3 +log4 + - - -

1—|— + + 5 +etc

1+ + + = +etc.

)
)
)
)

+ log x, this progression

must be summed indefinitely; but introducing numerical values:

Al pol e dop_

6’ 90’ 915" P = 9150° = 93555/

which progression is of such a nature that

1

F =

691

1-3

5.

5B=2AA, 7C =4AB, 9D =4AC+2BB, 11E =4AD +4BC etc,,

I showed elsewhere that it will be:

A 1-2B

1-2-3-

4C 1-2-3-4-5-6D

logy—flogZTH— <x—|— >logx—x—|—2x 28:3

which series, compared to the first, has the use that, the greater the abscissas

255

27x7

15315

+

x are taken, the faster it exhibits the true value of the ordinate y. Therefore,

since, if to the abscissa x the ordinate y corresponds, to the larger abscissa

x + n the following ordinate corresponds

yx+1)(x+2)(x+3)---

13

(x+n),

etc

7



we will have the following rapidly convergent series:

logy = %loan —log(x+1) —log(x+2) —log(x+3) — - -- —log(x +n)

1
+<x+n+2> log(x+n) —x—n
" A ~1.2B +1-2-3-4C_1-2-3-4-5-6D
2(x+n) 2%(x+mn)d  2°(x+n)’ 27(x +n)’

Therefore, if e denotes the number whose natural logarithm is = 1, and for
the sake of brevity one puts:

—+ etc.

A _ 1-2B +1-2~3-4C_

2(x+n) 28(x+n)3  2°(x+n)d
going back from logarithms to numbers we conclude:
27t(x 4 n) x4 n\* " -
x+1)(x+2)(x+3)---(x+n) e ’

where the integer number 7 is arbitrary; but the larger it is taken, the easier
the true value of s can be found.

etc. =s,

Y=

11. Finally, the ordinate y can even be exhibited by an integral formula; for,
having put the abscissa x = p and having introduced the new variable u,
independent of the quantity p, the ordinate will be

1\7
y:/du <logu> ,

if the integration is extended from the value u = 0 to the value u = 1. Or, if
one prefers the exponential form, it will also be

y= /e‘”v”dv,

extending the integration from v = 0 to v = co. From those formulas, if the
abscissa p is an integer number, the integration indeed immediately yields

y=1-2-3---p,

14



but if p was a fractional number, hence it is at the same time understood to
which class of transcendental quantities the value of y is to be referred. Indeed,
I showed on another occasion, how the integral can then be expressed using
quadratures of algebraic curves.

12. Therefore, lo and behold the many solutions of our first question, in
which for an arbitrary abscissa x, even though it is expressed by a non-integer
number, the value of the ordinate y was in sought after; it will be helpful to
have listed up the principal ones, that hence in each case the one which seems
to be the most useful can be chosen:

15



1 2\* 2 3\* 3 AN* 4 5\
L y=——1\=] ‘=—\z) ‘=—\5) +—— |5 ) -etc
I1+x\1 24x\2 34+x \3 44+ x \4
14+ x\" 1 3+x\* 2 5+x\* 3 74+ x\* etc
y= 2 1T+x \24+x 24+x \3+x 34+x \5+x '

L. logy = xlog% —I—xlog% —I—xlog% +xlogz + etc.

II.

—

— log(1+x) —log <1 + ;x> —log <1 + Cl),x) —log (1 + ix) — etc.

Iv. logy—xlog + 1g73+ log 5-|- log 7_|_ 10g

x+7
1 1 1
— log(1+x) —log (1 + 2x> —log (1 + 3x> —log (1 + 4x> — etc.

1 1 1
V. logy = —Ax+x+§x+§x+1x+etc.

— log(1+x) —log <1 + ;x> —log (1 + ;x> —log (1 + ix) — etc.
x

1
—Ax + - x

1+1+1+1+etc
2 32

1
3x3<1+ —I— 5+ 3 +etc)
VL logy = —l—%x‘1 (1+ + +etc)
1 5
gx 1+ + +etc
+ etc.

A 1-2B 1.-2.3:-4C 1-2---6D

9
+ etc.

1 1
VII. logy = 5 log 27 + (x + 2) logx —x + B3 + TR VoW

while A = 0.57721556649014225 and

1 1 1 1 1
A= B=g5y C=g95 P=opmy F=omss ©f©

Then in the three last forms one has to use natural logarithms.

16
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SECOND QUESTION

On the hypergeometric curve for each point to define the direction of its tangent.

13. Therefore, here we assume that for the abscissa x the value of the ordinate
y has already been found, and since the direction of the tangent is defined by
the ratio of the differentials Z—Z, by which fraction the tangent of the angle, in
which the tangent at that point is inclined to the axis, is usually expressed, it
is just necessary that we differentiate one of the found formulas. To this end
formula V seems especially suitable, from which we conclude:

LN
ydx

N —
W=

1 1 1 1

S 14+x 24+4x 3+x 4d+x —ete.

which expression is contracted into this more convenient one:

N S . S
ydx 1+x 22+x) 30B+x) 4(4+x)

whence it is clear at the same time, if x is a negative integer number, that not

+ etc.,

just the ordinate y but also the formula % becomes infinite, such that in this
points the ordinates, since they are asymptotes, become the tangents. But let
us in general put the angle the tangent constitutes with the axis = ¢ that

dy _
dr tan ¢.

14. Therefore, first let us define the tangents for the abscissas x which are

expressed by positive numbers, since the ordinate y are given.

I. Therefore, let x = 0 and, because of y =1,

W A

Iy = —0.5772156649 = tan g,

whence

17



IL.

III.

IV.

the angle ¢ = —29°59'29”,

where the sign — indicates that the tangent falls to the right of the axis
and does not constitute an angle of 30° with it.

Let x = 1 and, because of y =1,

Z—i =1-— A =0.422784335 = tan ¢,

and hence
the angle ¢ = 22°55’.

Let x = 2 and, because of y = 2,

dy 1 _ _
=2 <1 +5- A) — 1.845568670 = tan ¢

and hence

the angle ¢ = 61°33'.

Let x = 3 and, because of y = 6,

dy 1 1 B
dx—6<1—|-2+3—A) = tan ¢

or

tan ¢ = 7.536706010 and ¢ = 82°26'.

Let x = 4 and, because of y = 24,

dy 1 1 1
dx_24<1+2+3+4 A)

and hence

tan ¢ = 36.146824040 and ¢ = 88°25'.

18



Therefore, in general, if the abscissa x is equal to an arbitrary integer number,
because of y =1-2---n, it will be

dy 1 1 1
dx—tanq)—1-2-3---n<1+2+3+---+n—A).

15. Hence let us also define the tangents for the intermediate points, and
first certainly for those corresponding to positive abscissas:

L Letx:%,itwillbey:% 7t and

dy 2 1 2 1 2
B A+ 124 oS tete
ydx tlogty gty ptele
or
dy 1 1 1 1
oo A2 (s 4> —Ztete ] =—-A+2(1—1log2
ydx + (2 312 5—|—ec) +2(1 —1log2)
and hence

% =tan g = y(2(1 —log2) — A) = 0.0364899739 - y.

1-
II. Let x = %, it will be y = % 7T and

dy 1
ydx——A—i—2(1+3—log2),

whence

Zz —tang =y (z <1 + % —log 2) - A) = 0.7031566405 - y.

ML Let x = 3, it willbe y = 132./7 and

dy 1 1
—— = — 2(1+ 5+ - —log2
yix A+ <+3+5 og)

hence

tang =y <2 <1 + % + % — log2> — A) = 1.1031566405 - y.

19



Since now

1
E\/ - (2(1—log2) — A) = 0.0323383973,

for these cases it will be:

1
X = 5 y = 0.8862269, tan¢ = 0.0323384,
X = %, y = 13293404, tan¢ = 0.9347345,
5
X = X y = 3.3233509, tan¢ = 3.6661767,
7
X = 5 y = 11.6317284, tan ¢ = 16.1549694,
X = g, y = 52.3427777, tan ¢ = 84.3290907,

etc.

16. Before I proceed, I observe, if for any abscissa it was

xX=p, y=gq, tang=r,

that then for the following abscissa it will be

x=p+1, y=4q(p+1) and tang=r(p+1)+g,

but for the preceding one

x=p-1, y:Z and tan(pzz—i

poopr
whence we can easily continue the above values backwards:

20



1

X = 5 Y= 0.8862269, tang =  0.0323384,
1

x=-5 y= 1.7724538, tan¢@ = — 3.4802308,
3

x= — o y = — 3.5449077, tang = — 0.1293538,
5

X= -5 y= + 23632718, tan¢ = + 1.6617504,
7

X= -5 y=- 0.9453087, tang@ = — 1.0428236,
9

x= -5 Y= + 0.2700882, tan¢ = -+ 0.3751176,
11

X= -7, Y= - 0.0600196, tang¢ = — 0.0966971,
13

X= -7, Y= + 0.0109126, tan¢ = + 0.0195654,

etc.

17. The same differential equation serves for finding the point u of the
curve, where the ordinate is the smallest or the tangent is parallel to the axis.
Therefore, having put % = 0, the corresponding abscissa x must be found
from this equation:

X . ox X X 2
S 1+x 2(2+x) 3(3+x)  4(4+x) 5(5+x)

which is expanded into this one:

A

+ etc.,

21



etc.

But having substituted the proximate sums of these series it will be

0= + 05772156649  — 1.6449340668 x
+ 1.2020569032 x> — 1.0823232337 x°
+ 1.0369277551 x* — 1.0173430620 x°
+ 1.0083492774 x® — 1.0040773562 x”
+ 1.0020083928 x® — 1.0009945751 x°
+ 1.0004941886 x'0 — 1.0002460866 x'!
+ 1.0001227133 x'2 — 1.0000612481 x'3
+ 1.0000305882 x4 — 1.0000152823 x'°
etc.

But if the first to fractions are kept, the following a lot more convergent series
emerges

22



X

— - i T
+ 0.0770569032x2 — 0.3949340668x

+ 0.0056777551x* — 0.0198232337x3
+ 0.0005367774x% — 0.0017180620x°
+ 0.0000552678x% — 0.0001711062x”
+ 0.0000059074x'° — 0.0000180126x”
+ 0.0000006430x% — 0.0000019460x!!
+ 0.0000000706x* — 0.0000002130x13

+ 0.0000000078x® — 0.0000000235x >

0= + 0.5772156649

etc.

Hence one finds approximately x = 1, but this minimal ordinate will be
defined more easily by means of the following question.

THIRD QUESTION

For a given point of the hypergeometric curve to investigate the nature of an infinite-
simal portion of this curve around this point.

18. Therefore, for the given abscissa x = p let the ordinate y = g have
been found; and now one has to find the ordinate, which corresponds to the
abscissa p + w differing from that one by just a small amount. Therefore, since
according to formula V

1 1 1
logg=—Ap +p +§p + Zp + —p + etc.

—log(1+p) — log (1 + ;p> — log <1 + ;p> — log (1 + ip) — etc.,

if one writes p 4+ w instead of p here, instead of log g the value of log(g + )
will result, by which the question will be resolved. And if we put logq = P,
writing p + w instead of p, it is known to result
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wdP  w?ddp Ww3dp w*d*p

log(q+9) =P+ 30+ 1502 T T2 3ap T 123 adp8 T
But on the other hand, as we have seen:
dpP p p p p
== A tc.
dp YT 22 P3G TaE ) T
and hence further:
Ldp = ! + L + ! + ! + etc
L-dp2 — (1+p)?  (2+p? @+p?  (4+p)?
5137P _ 1 B 1 B 1 B 1 ete
1-2dp> — (1+p)3 @2+pP3 GB+p?P (“+p)? '
&P L R R
1.2.3dp* — (1+p)*  (2+p* GB+p?t @+p)?

etc.

whence, because of P = log g, we conclude:

log<1—|—1’qb):—Aw+ w < P_ 4 P + pp + etc.

1+p 22+p) 33B+p)
+1w2< LRI SIS ——
2N+ p? " 2+p2 T Brpp
1,/ 1 1 1
N <<1+p>3+(z+p>3+<3+p>3+etc
+1w4< LENE SR S
4 \(1+p* @2+p* @B+p?
1,/ 1 1 1
~5¢ <<1+p>5 2+pp | GEpp
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19. Here now the coordinates p and g can be considered as constant, since
the letters w and i denote two new coordinates taken from a given point
of the curve and parallel to the first set; from their relation defined here the
nature of the curve around that point is easily investigated. Thus, since we
have already assigned innumerable points of the curve, hence the trace of
each portion of the curve between two of those conjugated points can be
defined approximately. First, from that differentiated equation, as before, the
inclination ¢ of the tangent to the axis is calculated and

dip

Y _(_ P P |4
dw_tanqo_q< A+ +

tc. | .
1+p 2(2+p)+3(3+p)+ec>

Further, if for the differential equation, for the sake of brevity, we put

dp = Adw + Bwdw + Cw?dw + etc.,
the curvature radius at a given point of the curve will be

(1+A44)2 1
B - B-cos’¢

because of A = tan ¢. But on the other hand

— _ p p p
B—tan(p< A+1+p+2(2+r7) +3(3+P) +etc.>

1 1 1 ‘
+q<<1+p>2+ e p2 G2 <4+p>2+“‘>'

whence, if the curvature radius is put = r, it will be

l_sinzgocosqo_'_ ( 1 n 1 n 1 +etc>
rm g \aepr e G )

20. But to be able to extend the investigation of the direction and the curva-
ture from the principal point defined by the coordinates p and g to the points
of the curve, for the sake of brevity, let us put
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p p p p

—A tc. = P,
Y1, T2+ T36+p) Ta@sp T
! + ! + ! + ! +etc. = Q
(1+p?  @2+p? (B+p?* (4+p)? Y
! + ! + ! + ! + etc. = R
(I+p)32  @2+p2 @+pP (“E+p)P Y
! + ! + ! + ! +etc. = §
(I+p?*  Q+p?* @+p?* (“E+p)t o
etc.,
that
1

1 1 1
log (1 + 1’:) = Pw + EQwZ — —Rw® + 1Sw4 — —Tw® + etc.

3 5

Hence now differentiating we find:

j—z = (g +¢)(P + Qw — Rw? 4 Sw® — Tw* + etc.)
and differentiating further
gi}lg = (g +¢)(P + Qw — Rw? + Sw® — Tw* + etc.)?

+(7+ $)(Q — 2Rw + 3Sw? — 4Tw + etc.)

3
Z%’i =3(9+¢)(Q ~ 2Rw + 35w’ — 4Tw’ + ete.) (P + Qu — Rw’ + S’ — etc.)
+(q+9)(P+ Qw — Rw* + Sw® — Tw* + etc.)’
—(q+9)(2R — 65w + 12Tw? — etc.).

Having covered these calculations, for the point of the curve corresponding to
the abscissa x = p + w and y = g + ¢ the direction of the tangent will be
ay

dw
But then, having put the curvature radius = r, we know that it will be:

tan ¢ = :(q+¢)(P+Qw—Rw2+Sw3—Tw4+etc.).
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dw? dw? dw?
or
1 ddy 4
; ﬁ cos™ @,

whence we find for the variability of the curvature:

3
— r;firw = gwl’[; cos® ¢ — 3;520 . flc(ﬁ sin @ cos? P.

But on the other hand

dp_ _ ddy
cos?g  dw’

whence:

d & ddp\*
Sk :cos3g0—3<a:’b) sin ¢ cos? ¢.

FOURTH QUESTION

To investigate the nature of the hypergeometric curve around its lowest point y where

the ordinate is the smallest.

21. Since this point is not far away from the point corresponding to the
abscissa = % and the ordinate = %\/E, let us set p = % that g = % 7T, and
hence first let us find the values of the letters P, Q, R, S etc., which will result

as:
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P=—-— A+ % + % + % + etc. = 2(1 —log2) — A = 0.03648997397857
Q= % + % + % + % + etc. = 0.93480220054468
R = % + 5% + % + % + etc. = 0.41439832211716
S = ;TE + g + ;7? + é—g + etc. = 0.0.23484850566707
T = ?3% + ?5% + :;% + ?9’—? + etc. = 0.144760040831276
V = g—? + %L + gé + 2—3 + etc. = 0.09261290502029
W = 13i78 + % + % + 19? + etc. = 0.06035822809843

Further,

1
q = 5V = 0.88622692545274.

22. Hence let us especially define the point y, where the ordinate is the smal-
lest, since which simple approximations show to correspond to the abscissa
x = 0.4616, having put

1
p+w=§+wza%w,
one approximately finds

w = —0.0383,

which value must be investigated more accurately from the equation Z—f] =0
or

P+ Qw — Rw? + Sw® — Tw* + etc. = 0.
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Therefore, since approximately w = —21—6, set w = —2% — z, and after the

substitution it has to be
+ 0.03595393079018 + 0.934802200z
+ 0.00061301526940 + 0.031876794z + 0.414398zz
+ 0.00001336188585 + 0.001042227z + 0.027097zz
-+ 0.00000031677900 +- 0.000032945z + 0.001285zz
-+ 0.00000000779479 + 0.000001013z + 0.000053zz
-+ 0.00000000019538 + 0.000000030z + 0.000002zz

-+ 0.00000000000496 + 2z +

+ 13 +
0.03658063271970 + 0.967755211z + 0.442835zz
0.03648997397857

0 = 0.00009065874113 + 0.967755211z + 0.442835zz

whence one finds

z = —0.00009368323

and hence

w = —0.03836785523.

Therefore, the smallest ordinate mp corresponds to the abscissa

Om = 0.46163214477.

For the ordinate my = g + ¢ on the other hand one has to expand the equation

1 1 1 1
log (1 - 1{/;) = Pw + EQwZ — ng3 + 15(,04 - gTaﬁ' + etc.,

from which one concludes

log (1 + 15) = —0.000704053
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and further

1+ 1’; =1 - 0.000703805,

so that the smallest ordinate becomes

mp = g+ 1 = 0.8856031945.

23. Now let us in general differentiate define the value of ¢ from the loga-
rithmic equation, and, having done the calculation, we will obtain:

lf; = + 0.0364899740w + 0.468066860cw?
— 0.121069221w* + 0.16321479cw*

— 0.09360753w° + etc.,

which terms, if the value of w is very small, suffice. But, for the sake of brevity,
let us put

1{5 = Pw + Qw? — Rw® + Gw* — T,

that

P = 0.0364899740, 0 = 0.468066860,
R = 0.121069221, & = 0.16321479,
T = 0.09360753,

and hence we will have:

d
% = g (P + 29w — 3Rw? + 46w — 5Tw?)

Z‘sﬁ = (29 — 6%Rw + 126w? — 20Tw?).

If we now hence want to find the radius of curvature at the lowest point y,
where
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w = —0.03836785523,
since there % = (, that radius of curvature will be = ZT“’I;. Put the curvature

radius in this point = r, and since

1
= 2¢(Q — 3Rw + 66w? — 10Tw?) = 0.9669949,

for the point u the curvature radius results as

r = 1.166893.

24. [ investigated these determinations of the lowest point u of the curve
with all eagerness, that it can not without any reason be conjectured, as
this point has an extraordinary property, that so the numbers exhibiting its
nature contain a certain elegance, and if they can not be expressed sufficiently
simply in terms of a rational or irrational number, that they are at least to be
referred to a certain simpler kind of transcendental quantities. But against the
expectation it happened that such a criterion for elegance appears neither in
the abscissa

Om = 046163214477

nor in the ordinate

mu = 0.8856031945

nor in the curvature radius at this point

= 1.166893;

for, no affinity to simpler rational numbers or irrational numbers or to the
quadrature of the circle or to logarithmic or exponential numbers is detected.
Since, if the abscissa Om is considered as a logarithm, the number correspon-
ding to it could seem to promise several things, I sought after this number
and found

= 1.586616,

in which no affinity to any known quantities is recognized.

31



25. Before I end this speculation, it will helpful to have observed that the
formula1-2-3- - - x can also be expressed indefinitely in terms of the following
series

x(x—1) x(x—1)(x—2)

x _ —1)¥ — )X _
=)+ = 2) 123

(x —3)* +etc.,

which, as often as x is a positive integer number, immediately gives that
product 1-2-3---x. This is indeed also achieved by this further extending
expression:

x(x—1)(x—2)
1-2-3

x(x—l)(a_z)x_

X _ _1X o\ =7
a* —x(a—1)"+ T3

(a —3)* + etc,,

for, if for x one successively substitutes the numbers 1,2, 3 etc., it will be as
follows:

=1

al—(a-1D'=1

a?—2(a—1)2+(@—2)2=1-2
a®>-3a—-1P3+3@-22-(@@-3°=1-2-3

a* —4a—-1)*+6(a—2)*—4(a—-3)*+(a—4)*=1-2-3-4
a°—5(a—1)°+10(a—2)°-10(a—3)°+5(a—4)°—-(a—5°=1-2-3-4-5

26. These are certainly obvious from the results demonstrated on the diffe-
rence of each order of algebraic progressions, but nevertheless from the nature
of these series the truth is not easily uncovered; thus, the following proof
seems to be in order. Since for smaller exponents x the matter is obvious, I
reason as follows, i.e. that, having conceded the truth for the case x = n, I will
show that it also follows for the case x = n 4 1.

Therefore, let

—2)%—etc.=N=1-2-3---1,
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and since the number N does not depend on g, it will also be:

n(n—1) 2 —
ﬁ(ﬂ 3) etc. —N,

which subtracted from the first leaves:

I (a—1)"—n(a—2)"+

0L a" — (Tllﬁ(a —1)+

(n+1)n
1-2

(a—2)" — (n +11,)Z(.T;_ 1)

(a—3)" +etc. =0,

multiply this by a so that it results

(n+1) (n+1)n (n+1n(n—1)

n+1 _1\n 9\ __ __A\n _
IV. a 1 ala—1)"+ 15 a(a—2) 1.5.3 a(a—3)"+etc. =0,
to this one add equation II multiplied by n + 1, i.e.:
V. +m+1D1a—1)" - (”i;)”z(a—z)”ju%(_’;*l):s(a—s)” —etc. = (n+1)N

and the aggregate IV+V will give

(n+1) w1 _ (A Dn(n —1)
1 1-2.3

where, because of N =1-2-3--- N, itwillbe (n+1)N=1-2-3---(n+1).
Therefore, it is proved that, if our proposition

VI "1 — (a—1)"1 4 (a—2) (a—3)"" fetc. = (n+1)N,

(n+1)n

x(x—1)(x—2)
1-2-3

x(x—1
( ) ( a— 2)36 _
1-2
was true in the case x = n, it will also be true in the case x = n + 1. Therefore,
since it is obviously true in the case x = 1, hence it follows that it is also true
for all positive integer numbers assumed for x.

a* —x(a—1)"+ (a—3)" +etc.=1-2-3---x

27. But although this expression is sufficiently elegant and worth one’s
complete attention, it is nevertheless less useful for our task, in which the
hypergeometric curve it propounded, since for the cases, in which x is a frac-
tional number, this series not only runs to infinity but also, if the denominator
is an even number, contains imaginary terms, such that its value can not even
be calculated using approximations. So, having put x = 3, this infinite series
results:
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1 1-1 1-1-3 1-1-3-5
Vi oVa 1o Va -2 Va3 g g gV et

whose value can hardly be shown by anyone to be = 3+/7. In like manner,
taking x = —3J, from the above results we already know that

\/%—LJF 1 N 1-3 N 1-3-5
CVa 2va—1 2-4Va—2 2-4-6ya-3

Nevertheless, a further investigation of this series is left to the mathematics,
especially if it is extended and represented in this form:

+ etc.

m—1)(m—2)

m(m—l)(x_z)n_m( L

— " —m(x— 1) D)
s=x"—m(x—1)"+ 1.5

(x —3)" 4 etc,;

for, without much effort one soon detects extraordinary properties, whose
expansion seems worth our complete attention. I will now present all extraor-
dinary phenomena I was able to observe about it.

OBSERVATIONS ON THE SERIES

m(m — 1)( oy m(m—1)(m—2)
1.2 1-2.3

I. Therefore, in the preceding I already demonstrated, if the exponent n was

= m, that the sum of this series will be

s=x"-—m(x—1)"+

(x —3)" 4+ ETC.

521237’1’1,

so that in this case it does not depend on the number x. But hence I first
conclude, if n = m — 1, that then it will be s = 0. For, since, having taken
n=nm,

m(m_l) m
ﬁ(x —2)" —etc.

and, writing x — 1 instead of x and m — 1 instead of m, in like manner:

n--1-2:3---m=x"—m(x—-1)"+

m—1)(m—2)

%..1-2:3---(m—1) = (x—1)’”*1—(m—1)(x—2)m*1+( T (x—3)""! —etc.

Now represent that equation [h] this way:
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-1
o’---1-2-3---m:x-xm1—mx(x—1)m1_|_m(’1nz)

x(x —2)"1 — etc.
m(m—1)

—1)m-1_
+ o x-) -

(x —2)" 1 + etc.
but the equation % multiplied by m gives:

m(m—1)
1

m(m—1)(m—2)
1-2

®-1-2:3---m=m(x—1)""1 - (x—2)" 14 (x—3)""! —etc.,

which subtracted from ¢ and divided by x yields:

-1
00—t = M gyt D) et gy,
1 1.2
which is the propounded equation for the case n = m — 1, whose value thus
is = 0.

II. In like manner it is shown that the sum s of the propounded series also
vanishes in the case n = m — 2. For, represent the series ¢ this way:

g0 =2x-x""2 — ?x(x —1)m2 4+ m(T;”x(x —2)"=2 — etc.
-1
+ m(x—1)""2 — m<71ﬂ2)(x —2)"2 4 etc.

and if in the same series @ one writes x — 1 instead of x and m — 1 instead of
m, but the whole series is multiplied by m, it becomes
m(m

-1
1)(x —2)"2 + etc.

Having subtracted this one from that one, divide the remainder by x and it
will result:

)---0=m(x—1)""2—

m(m—1)

15 (x —2)"2 —etc.

0=x""2— ?(x —1)"2 4
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And so the sum of the propounded series also vanishes in the case n = m — 2,
and in like manner it can be shown that it also vanishes in the cases n = m — 3,
n = m —4etc. and in general n = m — i, where i is an arbitrary positive integer
number. Therefore, keep in mind that the sum of the series sis =1-2-3---m
in the case n = m, but in the cases, in which the exponent 7 is smaller than
the number m, the sum vanishes, if the numbers m and n are integers or at
least n — m is a positive integer number, of course.

ITI. Therefore, to investigate the nature of the remaining cases, let us expand
each term of our series and arrange them according to the powers of x, having
done which we will obtain:

s = x" <1_m+m(m—l) _m(m—l)(m—z) —i—etc.)

1-2 1-2-3
+ nx"! (m — ZmS@; D + 3m(m; ;)(;n —2) —etc.>
nn—-1) , , dm(m—1)  9m(m—1)(m —2)
T X m 12 + 123 etc.
nn—1)(n-2) , 5 8m(m—1) 27m(m—1)(m—2)
123 ~ \"" 12 ° 1-23 et
etc,,

the sums of which series we will find as follows; first, exhibit them a bit more
generally, and since its sum is known:
m(m—1) , m(m—1)(m=2) ; _ m
1 mu+ﬁu 19.3 uw +etc. = (1—u)",
let us differentiate it continuously and always substitute u for du again, and,
having changed the signs, it will be:
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2m(m—1) , 3m(m—1)(m—2) ,

mu— o Ut T3.3 ud —etc. = mu(1 —u)"™!

mu — 2m(1n?2— D) u? +etc. = mu(1—u)" 1 —m(m —1)u?(1 —u)"2

mu — 23m§rf12— 1)142 +etc. = mu(1—u)™ 1 —3m(m — 1)u?(1 — u)" 2
+m(m—1)(m —2)u(1 —u)"3

mu — Wz_l)uz +etc. = mu(1—u)"' —7m(m — 1) uu(1l — u)"2

+6m(m —1)(m —2)u3(1 —u)m3
“m(m — 1) (m — 2)(m — 3)ur(1 — )"

etc.

Therefore, here one now has to write u = 1, having done which all terms in
each order vanish except those where the exponent of 1 — u become = 0.

IV. Now successively attribute the values 1, 2, 3, 4, 5 etc. to m and instead of
the general coefficient

nn—1)(n—-2)---(n—i)
123 (i+1)

n—i

write ({=) for the sake of brevity, having done which we obtain the following

values:
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m=1
m=2
m=23
m=4
m=>5

it will be

2 _ E n—1 n—1 n—2 n—2 n—-3 __ n—3 n—4 n—4 n—-5 _

= (1)x ( 5 )x + < 3 b4 1 x —+ 5 X etc.
1 2 - —4 -

% :(”2 )xH— 3(”3 >x”’3+ 7<"43>x"*4— 15(”5 >x”’5+ 31<n6s>x”’6—etc.

12.3 :<n;2>xmﬁg—6<n;3>xW4+ %(”§4>M“5 90<”g5>wa+ an(";6>x%7fac

1.5.4 :(HZS)x”4410<ng4>xW5+ @(”ES)xwﬁf %0(”;6>wk7+ 1m1(";7>ﬂ“87em
_4 _ _ _7 _

1_25'__ = :(”5 )x”—5 15(”65>x"—6+140<"76>x"—7—1050<”8 )x”_8+ 6951<n98>x”_9—etc.
8 9

where the formation of each numerical coefficient from the preceding is
obvious; for, for the last sixth series:
21=6-1+15, 266 =6-21+140, 2646 =6-266+ 1050 etc.

And hence it is immediately seen, if m < n, that the value of s vanishes; for,
in the last series, if n < 6 and hence either 5 or 4 or 3 etc., it will be

n—>5 n—o
( G >—0, < - >—O etc.

But then on the other hand, if n = m, it is also evident that

for, in the lowest series:

(5)-n ()0 (5)-e ()0 o

EXPANSION OF THE CASESn =m + 1

V. Hence let us first expand the cases in which n = m + 1, and the last form
yields
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if these sums
S
m=1 n=2 1 =2x— 1
m=2 n=3 S _3x— 3
=2, = ) =
m=3, n=4 i =4x — 6
o o 1-2-3
s
= = —_— f— _1
m=4 n=>5 17.3.4 5x 0
S
m—5, n==~6 m =6x — 15
etc.,

where the first coefficients of x are equal to 7, but the absolute numbers are
equal to the triangular number of n; we will have in general

if this equation
s m(m+1) m
n=mtl | g, = mE)x= (m+)(x 2)’
such that
m(m —1) w1 m(m —1)(m —2)

X" (x — 1) - (x —3)"*1 fetc.

o (¥ 1-2-3

—1.2.3--- (m+1) <x—%).

EXPANSION OF THE CASESnn =m + 2

VI. Therefore, for these cases we will have:
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if it was these equations

s ) 2
m=1 n=3 1 = 3x*-3-1x+1- 3laxx — x+ 3
m=2, n=4 5 = 6x2—4-3 x+1 = 6 xx—2x+Z
S 1-2 N N 6
m=3 n=5 i 1022 5.6 x+1 25=10(xx—3v+ 2
- N 1-2-3 N 6
m=4, n=6 S 152 _6.10x+1 65=15(xx —dx 1+ 2
T 1-2-3-4 - - 6
m=5 n=7 5 =21x2 — 7-15x + 1- 140 = 21 xx—5x+@
o - 1-2---5 - - 6
m=6, n=_8 S 98 8.21x+1.266 =28 xx — 6x + 2
T 1-2---6 n 6

etc,,

which forms can be represented as follows:
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if it was it will be
S 2-3 1-4
m=1, n=3 1 _l-2<xx_ x + 12>
5 3-4 2-7
m=2, n=4 15 _m<xx—2x+ 1>
S 4.5 -10
m=3, n=>5 123 —m<xx—3x+12)
s 5.6 4-13
m=4, n=6 |15 31 1-2<xx_4x+12>
s 6-7 5.16
m=5 n=7 1355 _1-2<xx_5x+12>
S 7-8 6-19
m=6, n=38 176 1.2<xx—6x+12>,
whence it manifestly follows, if in general n = m + 2, that it will be
s - om+1 m+2 xx—mx+m(3m+1)
1-2---m 1 2 12
or
5 m+1 m+2 m\2 m
12-m 1 2 <(x_2) +12>'
Therefore, hence one obtains this summation
m+2 _qym42 m(m —1) _ m+2_m(m—1)(m—2)
x m(x—1)""" 4 T3 (x—2) 15,3

=1-2-3---(m+2) <; (x—rg)2+gjl).

EXPANSION OF THE CASESn =m + 3

VII. For these cases we will have
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if it was these equations
m=1 n=4 ; — 43— 6. 12 +4- 1x—1-1
m=2 n=5 1S—2 —10x3—10- 322 +5- 7x—1-15
_ _ 5 — 903 — 15 . 622 ) _1.
m=3 n==6 53 =20x>—15- 6x2 +6- 25x —1-90
m=4, n=7 : 25 ;=35 2110247 65x — 1350
m=5 n=8 ﬁ — 56x3 — 28 - 1542 + 8 - 140x — 1- 1050
which can be represented this way:
s _2:34(, §x2+Lx—1'1'2
1 S 1-2-3 2 4 8
s _3.4.5 o §x2+Lx—2'2'3
1.2 ~1-2-3 2 4 8
s _4.5.6 o 7x2+3-10x_3-3-4
1-2:3  1-2-3 2 4 8
s _5:6:7(5 12, 413 4.4.5
1-2---4 1-2-3 2 4 8
s _6-7-8 B 15 2+5-16x_5-5-6
1-2---5 1-2-3 2 4 8

etc.,

whence in general for the case n = m + 3 one concludes
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s m+1 m+2 m+3 x3_3m 2+m(3m+1)x_mm(m—l—l)
1-2---m 1 2 3

e (o) ),

such that we obtain:

m(m—1) " m(m—1)(m—2)
I R A v o

=1-2-3---(m+3) (é (x—zl)g,—l—;i(x—’;)).

PREPARATION FOR THE FOLLOWING CASES

X" (x— 1) 4 (x —3)""3 +etc.

VIII. Although in paragraph IV. we gave the formulas only up to the case
m = 6, let us try to find a general formula for them. To this end let us set
n =m+ A, and to abbreviate such an expression

k(k—1)(k—2)(k—3) - (k—i+1)
1-2.3-4...4

(7)

such that k denotes the first factor of the numerator, i on the other hand the
last factor of the denominator. Therefore, let us put that for the case

let us write

s _(mEAN m+A\ A m+A\ a1 mA+A\ A2
1-2-~~(m—1)7(m—1)x A s +B mr1)” C my2 )~ + etc.

s m+A\ 4 m4+ A m+ A m4+ A
s _(mxA _ Al A1 pl A2 ol A-3 _
123 -m ( m )x (m+1)x TP 2" Clngs)y Tee

such that A, B!, C1, D! etc. are the coefficients which must be investigated.
But from the law of these formulas we see that

Al=m-14+ A, B'=mA'+B, C'=mB'+C, D' =mC' + D etc,
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where it is evident that

m(m—1) 1 (m+1)m
mm ey Al VT
12 and 1-2

A= (%) and A'= (m;—l)

Now for the following operations I observe that:

(725)-(737)- (7).

which is clear, since by expanding:

A=

or in our notation

<m—|—y—|—1> _(mtp+)(mtp)mtp—1)---(m+p+2-v)
v 1.2-3---v

-3
(m+y> _ (m+y)(m+y—1)---(m%(—y+§—1/)(m+]/l+1—v)
v 1-2---(v—1) ’

whence it is seen that

IX. Now for it to be

1 p_ 1 (m+1 _ m—+1 m—+1
B B—mA—<2 >m—3<3 )-l—(z ,
m+1 m+1
B = _ _
(") e (")

let us set

and hence

and it will result
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Bl—B:zx<m;L1>+ﬁ<m;_1>,

whence « = 3 and = 1, such that

1 L [(m+2 m+2
B =3 (") ("52).
But for the following operations note that in general:
m—+u m+u m-+u
= 1) ( —£ —
(=)ot (22 s (232).

which form results, if the value of (ﬂiv—}—pl) expanded above is multiplied by

m-—+u—v

m=m+pu—v—v—pu=(w+1)- i

+ (v —p).

X. Since, having observed these things, it must be C! — C = mB!, because of

m—+2 m—+2 m—+2
(") m=s("57) 2 ("F)
m—+2 m—+2 m—+2
(%57 =4 (") 1 (")
1 m+ 2 m—+2 m+2\
mB —15<5 )+10<4 >+1<3 ;

m—4 2 m—+ 2 m—+ 2
c =18 (152) a0 (12 o (22

and

it will be

therefore, set

hence
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XI. Since in like manner it has to be D! — D = mC!, since
m—+3 m+3 m+3
n(e) =7 (") 2 (")
m+3 m+3 m-+3
’”(5)‘(6)”(5)

m+3 m+3 m+3
n(50) =s("5) 1 (")
it will be

1 m+3 m+3 m+3 m+3
mC* = 105 <7 ) + 105 (6 > +25 <5 + )
whence we conclude:
4 4 4 4
D! = 105 (’”;) +105 <m;L> +25 <mz> +1 (’”;) .

XII. Further, because of E! — E = mD!, since

we conclude
4 4 4 4
mD! = 945 <m;r> 41260 (m;> 4490 <m+> 156 <m+> 1

and hence



1 m+5 m+5 m+5 m+5 m+5
E* =945 (10 >+1260 (9 >+490 <8 +56 — +1 6

and, proceeding even further,

1 m+6 m+6 m+6 m+6 m+6 m+6
F' =10395 (12 >+17325 (11 +9450 0 +1918 5 +119 s )t l— )

EXPANSION OF THE CASEn =m + A

XIII. Therefore, for our series in the case n = m + A

m(m—1)(m—2)

-1
S:xm—H\*m(xfl)m-H\er(m )(fo)m—H\f 53

1 ﬁ (x73)m+A+etC.,

if we divide the general equation exhibited above in paragraph VIII by

<m+A> _(mAA)(mA A1) (m+A=2) - (A+1)
m 1-2:3---m ’

we will get to this expression

5 :xA_LAleA%_ AA—1) 1,A—2
A+1)A+2)--- (A +m) m—+1 (m+1)(m+2)
AA—1)(A—2)

_ Cl )\*3 t.
) (mL2)m+3) -~ T

where one has to substitute the following values for the letters Al Bl C!, D!
etc.:
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Al = (
B! = 3(
Ccl = w(
D'= 105 (
E'= 945 (
F! = 10395 (

10395 = 11 - 945,

hence, if for the following value one sets

Glzzx(

m—+7
14

Jro(t) e () o () v ()

these coefficients will be determined as follows:

a =13 - 10395

B =12-17325 4 6 - 10395
vy=11- 9450 + 5 - 17325

6=10- 1918 +4 -

48

17325 =10 - 1260 + 5 - 945
9450 = 9 - 490 + 4 - 1260
1918 = 8 56 + 3 - 490
119= 7- 14+2- 56
= 6 0+1- 1
+§<m;7

e=9-119 4 3 - 1918
{=8- 1+2- 119
n=7- 0+1- 1

9450

Joo

m+7

8

).



XIV. But the same values are expressed more conveniently this way:

Alz(Tgl)l

(5 )

d:(%?)0+10ﬂ%1 15- ;yf?%

D1:<Tgf)(1+ %~Tgl+—1%~m;1-ﬂ%3+1%~mgl~m;2-m;3)

Elz(TgE)O+-%-ﬂ;1+ @0”?4-T§3+1%0”?4-m;2~m;3
+945.m7—1.7118—247719—3.7111?)4)

zﬂ:(T;E)O+4w-ﬂ§1+1m&”gﬂ-T53+9%0”§4-m;2.m@3
+17325.1118—1.rr19—2'7111?)3‘”11;4
+1O395.mg1.m9—2.m163.m1;4.m1;5)

to see the law of which progression more easily, let us in general put

m+u—1 m—1 m—1 m-—2 m—1 m—2 m-—3 )
M1: _— 1 [ . . . . . tc.
( T )( TG TP T w2 T wr w2 was T

and the following one

+u 1 m-2 m—1 m—-2 m-3
N' = (22E) (144t 1z ! te.
<y+1>( T ﬁy+2 03 TV uT2 urs ura )

and these coefficients are determined as follows by the preceding ones:

=20 + u+1
Bl =3B+ (u+2)a

Y =4y + (4 +3)B
V=56 + (u+4)y
V=6 + (u+5)6,
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whence these formulas can easily be continued arbitrarily far.

XV. Let us now substitute these values, and for the sum s of the propounded
series, if n = m + A, we will obtain the following expression:

A+1D)(A+2)---(A+m)

A fﬂzxA—l " AMA = 1)mx/\—2 (1+ 3(m — 1))

1-2-3 4
_)\(/\1—12)(3\ 42)111 A 3(1+10 514_15.1115—1.n16—2>
+A(/\71)(2/\32i(/; 3)m e 4(1+25.mT71+105.m671.m;2+105.m;1.m;2.m;3
7% A= 5(1+56 Tl+49o Tl mT2+1260 TlmT_?’
+945.’"T_1.. m104)
+Wwé (1+119 T1+1918 Tl mT2+9450 Tlmmlif
+17325-mT*1-- mT4+10395 81-- m125>

etc.

hence first subtract the power

m A Am g AA=1)m? . AA-=1)(A=2)m®
("_E) R e I I R 1238

A A=3)mt oy A (A=’ 5 A (A=B)mC

+ — "+ ——————x"" " —etc.

But here it conveniently happens that

15 4 105 5 945 6 10395 7
56 8 6-7-8 16° 7-8-9-10 32" 8-9.-10-11-12 64’

the reason for which is obvious; therefore, the above expanded expression
takes on the following form:
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1-2-3 4 1-2-3-4 2
P (e )
At (s )

XVI. The power of x — 7, more precisely

AA=1)m (x m>)\*2
2.3...4 2
is again detected to be contained in this expression; having separated this

power, our expression will be:

( m>A+A(/\—1)m< m>/\—2+/\---(/\—3)mxA_4<5 1)

Y 2.3.4 "2 1---4-5 8"
156 © 16" " g™
Ao c(A=5)m 4 ¢ (35 5 91 , 7 1
o P — —m?— Zm+ — | —ete.
67 Y @™ ™ g™ T ae) T

which still contains

/\(A_3)m im_i (x_ﬂ))tfﬁl
1---4-5 48 24 2
furthermore, there still is
Avev(A=5)ym (3 , 7 1
167 ~ \576" 96" "3)

whence, without any doubt, this power additionally enters:

/\---(/\—S)m.35m2—42m—|—16( m)?\—6

1---6-7 576 2
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AA=1)---(A=3) m(5m—2)

Therefore, our expression will be of this nature:

- (2 D oy

A+1)(A+2)--- (A +m) 2
_g)A—AL AA—=1)---(A=5) m(35m2742m+16)( _m>A—6+etC

2

1-2---4 240 (x 2 1-2---6 4032 2

XVIL. Therefore, lo and behold the extraordinary transformation of our
propounded general series:

_ miA_ M m+A m(m_l) m(m_1>(m_2)
e e B 1-2-3
which, since found in a so long-winded way and using such intricate operati-
ons, seems so weird, that a direct investigation will provide us with useful
auxiliary tools for analysis: To investigate this transformation more easily, I
will represent it this way that:

(x —2)m+A — (x —3)"+ fetc.

S m\Ar AN — myA—2
(A+1)(A+2)---(A+m):<x‘5) +(1-21)P("‘z>

A()\—l)..-(A—s)Q(x_ﬂ))\*él—i_)\()\_1)...()\_6)1{(3(_@))\—6

+

AA=1)---(A=7) M-S A(A—1)---(A—09) A\ A-10
+ 1-2---7 S(x_5> + 1-2---10 T("_E)

etc,,

for which expression up to this point I have found:

m
P=_——
3-4
_ m(5m —2)
Q="5463
R — m(35mm — 42m + 16)
B 6-7-96
g m(175m> — 420m? + 404m — 144)
B 34560

but a method to find the values of these letters more quickly is desired.
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XVIII. But here it is especially helpful to have noted that our series is trans-
formed into another one which is a power series in x — %, the exponents being
A, A =2, A —4 etc. continuously decreasing by two; but then the letters P, Q,
R etc. depend only on the number m, such that neither the exponent A nor he
quantity x enter it; furthermore, that the prefixed coefficients involve the num-
ber A and follow the law of progression resulting from the expansion of the
binomial. Having studied this form carefully, it is manifest that the values of
the letters P, Q, R, S etc. can be found separately from the propounded series
or its transformed counterpart in paragraph XV, whose law of progression
likewise is known, if one sets x = 7; for, if one takes A = 2,

S
A+1DA+2)--(A+m)

but, having put A = 4,

A+1D)(A+2)- (A+m)

Q =
(
but, having put A = 6,

R = i etc.
A+1D)(A+2)---(A+m)

XIX. Therefore, if here for

s
A+1)(A+2)---(A+m)

one substitutes the series found above in paragraph XV. and to this end, for
the sake of brevity, one sets:
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B=1+ 3
¢ =1+ 10-
D=1+ 25
¢ =1+ 56-
F=1+119.

m—1
) 105 - ——
6 + 105

1
M=l 4902

m—1
— +1918 - ——
8 +

etc.

m

-2

%4 105 -
7—1—05

m

-2

- —5— + 1260 -

m

2

we obtain the following values

m m m

m4 m m3
Q=7Zp — 45 o3 + 6B

77’16 m m5
R=Z5 — 6% 5 o5 +15%

w3 @[3 @3

o

_ 9450 -
5+

—20¢ -

R

N

I NI

(68}

W

+

+

v
ol w3

9 -

m
5 — 6€-

2

+ 945

+ 17325 -

-+ 10395 -

2

m.m
6 2

+3

whence it will be convenient to expand the values of those letters 2, B, ¢, ©
etc., whence it results:
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3
¢ :%m2+2m:%(mm+m)
©:16m3+zm2+458m—24:156<m3+2m2—|—3m—125>
¢ :16m4+2m3+156m2—8m—362<m4+130 3—|—§m2 3m)
T —1m5+§m4+3—57113—21712—1771%-i

64 64 64 576 96 36

or

7 5 13 2 16
- 54 5 3_ Y. 2 < =;
5 64<m+m+m 9m 3m+63)

but here, aside from the first terms, no structure is seen.

XX. But that the transformed series is a power series in x — %, was based

only on induction, but it can be shown to happen necessarily this way. Since
the propounded progression ends as it begins, such that the last two terms
will be

+m(x —m+1)" F (x —m)" A,

where the upper signs hold, if m is an odd number, the lower on the other
hand, if m is even, let us assume that m is an even number (for, the same
conclusion follows, if it was odd) and put x — 3 = y, and it will be

55



25= + (y+2m "t m T mH+M +im_2 m+)\—etc
R 1\Y"2 12 \YT32 :
¥=3 1\Y 72 12 Y72 :

and after the expansion into powers of y = x — 7 one finds:

But all these series vanish until one gets to the one in which the exponents
are m, and we know its sum to be =1-2-3---m; therefore, having omitted
those, whose sum becomes zero, we will obtain:

() (@ -y Gy )

m
() (G- G (G )

and thus it is manifest, what I tried to demonstrate, that this series descends
in the powers y*, y* =2, y}~* etc.

XXI. Now let us attribute a form to the series similar to that we had in
paragraph XVII., and it will be
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S A m\m m /m m
(/\+1)(/\+2)---(/\+m):1.2y...m<(2> _T(E_l) +etc.>
A2 B . .
+1.21..2.y(m+2)'A(?.21)<<r§) +2—?(%—1) +2—I—etc.>
9.3 4yA4 N o
11.22..?.5(31}14)')\()L 11)23(2 3)<<2) +4—etc.>

etc.,

whence the values of the letters P, Q, R etc. can be determined in a new way
as follows:

P sy ((3) T () e

0= 5% 1<m+4) ((?)MH_T(?”)MHH“')

R=77% 1(m+6) <(?)M+6_T(?_1>M+et°>

S =510 1(m+8)<<7;)m+8_T(ig_l)M*etC')
ete.

Here certainly the summation of similar series is necessary; since these only
involve he number m, our investigation is to be considered to be reduced to a
simpler case. Furthermore, we realize just now that these letters depend only
on the number m.

XXII. But if here we successively attribute the definite values 1, 2, 3, 4, 5, 6
etc. to the letter m, we will hence obtain as many values for the letters P, Q,
R, S etc., knowing which one can easily conclude their general forms. Thus,
to find the letter P, we will have
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ifm=0, 1, 2, 3, 4,etc.
3-22P=0, 1, 2, 3, 4etc
diff 1, 1, 1, 1,
such that hence 3-22P = m and P = % as before. Further, for the letter Q,

ifm= 0, 1, 2, 3, 4, 5, 6
24.3.5Q0 =0, 3, 16, 39, 72, 115, 168
diff. 1. 3, 13, 23, 33, 43, 53

diff. II. 10, 10, 10, 10, 10,

therefore, it will be

1
2.3.50 +3m+ 10" =V | 5w —2)

1-2
and hence
_ m(5m —2)
Q= 24.3.5 °
In like manner for the letter R,
ifm=0, 1, 2, 3, 4, 5, 6
260.3.7R = 0, 3, 48, 205, 544, 1135, 2048
diff. I. 3, 45, 157, 339, 591, 913
diff. 1I. 42, 112, 182, 252, 322,
diff. III. 70, 70, 70, 70,
whence one concludes
35

26-3-7R:3m+21m(m—1)+?m(m—1)(m—2)

and

R— m(35m? — 42m + 16)
26.32.7 ’
which same values we obtained above already; therefore, let us apply the
same operation to he following letters.
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XXIII. Therefore, for the letter S we will have:

ifm=0, 1, 2, 3, 4, 5, 6
28.5.95=0, 5, 256, 2013, 7936, 22085, 49920
diff. I. 5, 251, 1757, 5923, 14149, 27835
diff. II. 246, 1506, 4166, 8226, 13686,
diff. T1I. 1260, 2660, 4060, 5460,
diff. IV. 1400, 1400, 1400
whence

175

28.5.95 = 5m +123m(m —1) +210m(m — 1) (m —2) + 3

m(m—1)(m—2)(m—23)

Now further, for the letter T we will have:

ifm=0, 1, 2, 3, 4, 5, 6
210.3.11T =0, 3, 512, 7665, 4680, 174255, 499968
diff. 1. 3, 509, 7153, 38415, 128175, 325713
diff. II. 506, 6604, 31262, 89760, 197538,
diff. TII. 6138, 24618, 58498, 107778,
diff. IV. 18480, 33880, 49280,
diff. V. 15400, 15400
whence

2103 11T = 3m + 253m(m — 1) + 1023m(m — 1) (m — 2)

+ 770m(m —1)(m — 2)(m — 3)

+ 33§m(m 1) (m —2) (m —3) (m — 4)
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and

T m(385m* — 1540m> + 2684m? — 2288m + 768)
- 210.9.11 )

XXIV. Now let us represent these values in such a way that the law of
progression can be explored more easily:

_m
12

1-3m 2
Q_122<m_5)

1-3- 1

P

123 5 35
g L35 7m( o 12 404 144
- 124 5 175 175
p 1357 9m 20 o 244, 28 768
n 125 5 35 35 385

and here in the first and second terms the law of progression is so manifest,
that the same can safely be assigned for all following letters, but in the
remaining terms one can still not observe any law.

XXV. Therefore, to find the value of the letter V, let us set

156 —m4+txm3—ﬁm2+7m—5).

y_1:3:5:7:9-1lm <m5 350

But from the general form

Ve (3 -G (G

we conclude that:
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if it will be

m=1, V = ﬁ =
m=2, V= % =

%(_ 54 a— B+ v—9)
5211773131 (— 64+ 8au— 48 +2y—0)
%(_er 270 — 9B + 3y — 4)
Y v (=524 6da— 165 + 4y — 0)
B gt (— 625 + 1250 — 256 + 5 — 0)
%(_ 0+ 216x — 266 + 67 — 0)

Therefore, hence let us form the following equations:

x— B+ v-—
8n — 4p + 27 —
270 — 9B + 3y —
640 — 16p + 4y —

1256 — 256 + 5y —

216a — 368 + 67 —

27

0= 571113 = °
27 - 2048

0= 5.72.11-13 + 6
9.597871

‘5_52-72-11-13Jr243
27 - 256 - 5461

‘5_52-72-11-13Jr512
27 - 5838647

5_52-72-11-13Jr625

5 3.512 - 63047 0
5.72.11-13

Now the first differences will look as follows:
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27 - 157

70— 3B+ = 57211 + 59
190 — 5+ = 592'_47%%1 +179
370 — 7B+ = ;?77726??? + 269
6la — 9B+ 7 = 72572"37?51817 +113
9la — 11 + 7 = 735'2?3;?21619 ~ 625

the second differences, divided by 2, on the other hand give

9-268

b — B = N + 60
9 — B = 9521_5;3 + 45
120 — B = 95')24?;8 78
150 — B = 35‘2& — 369
Finally, the third difference, divided by 3, yield
:%— :354?9—41:359.—677—97,

which three equations give the same value

572 4-11-13

5.7 5.7 7

from which value now the remaining ones are defined as follows:

o
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6-572  9.268 121229 4248 8-.9.59
p= 5.7 52.7 —60= 52.7 _60_175_ 175
27.157 255968
Y=t e Y T e
27 1061376
d=e— Pt 5o g3 T2

XXVI.
this point all at once

Thus, let us list up the values of the letters P, Q, R etc. found up to

1m
P=>
12
1-3m 2
Q_122<m_5)
1-35m( , 6 16
g _L1:3:57m/( 5 12 , 404 = 144
12t 5 175 175
7 13579m /@ , 20 5 244 , 208 768
B 125 5 35 35 ' 385
y_ 18579 Um/( 5 30 , 572 , 4248 , 255968 1061376
B 126 5 35 175 13475 175175

From the first terms I conclude that here powers occur, having separated
which the structure seems that it can be seen more easily:

63

).



_im
12

1-3m 2\!
Q—uz<m‘5)
R_L35m /(3 +£
124 5 175
g _ L35 7m (4 3+4.17m_16.17
- 124 5 175 5.175

1-3-5-7-9m<< 5)4 217 , 4-17 383)
IT=—©0—|(m—2) +—m ———m+ —

P

125 5 35 35 385
y_ 13579 1m (( 6\° 417 5 7217 . 581296 78185568
B 126 5 35 175 5%.72.11° 55.72.11-13 )
yes, it even seems that the second terms can be approximately contracted this
way that it results:
1m

1-3m 2
Q—uz(m‘s)
R L35m 3\ 17
123 5 175
g _ 135 7m (4 3+4-17 o4
o 12¢ 5 175 5

p_1:3579m(( 5 4+1o-17 L5 2+i
- 125 5 175 5 385
1-3-5.7-9-11m 6\° 20-17 6\° 15808 4672128
V = m— = —|m—- = m — .
126 5 175 5 53.72.11 55.72.11-13

If we had not found the last value, it would seem that all these expressions
are reduced to powers of this kind, what we now have to admit not to happen.
Therefore, one must investigate the law of these letters from another source.



XXVIIL Therefore, let us rather represent each term of these formulas this
way:

m
P=—
4.3
mm m
Q=1%3 8§35
R_5m3_mm+ m
C64-9 32-3 4.9.7
575-77}14_77}13 101m* m
©256-27 64-9  64:27-5 16-3-5
5-7m> 5-7m*  6lm3  13m? m
T = B + - +
1024-9 2569  256-9 64-9  4-3-1
_5-7-11m® 5.7-11m®>  1573m*  649m3 7999m? 691m

1096.27 20489 ' 1024.27 512.3.5 1282757 8.9.5.7-13’

where we have already noticed the structure in the first and second terms, but
the last terms seemed to have no structure at all, until, having expanded the
value of the letter V, the number 691 provided us with a criterion that the last
terms contain the Bernoulli numbers.

Therefore, let us denote the Bernoulli numbers by the letters «, B, 7, J etc.
such that

1 1 1 3 5 691
— = — = — 5 = — = — =
2’ P 6 "7 10 ¢ ¢
and, concerning these, let us note this law of progression:

N = etc.

210
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21

_ 5-4n _E

ﬁ_22-1-2-3 23

_ 768 7-6-5-4a N

T 22.1.2.3 24.1.2...5 25

P 9-8y  9:8:7-6-P 9-40 4

0 22.1.2.3 24.1.2...5 26.1...7 27

_ 10-116  11---8y 11---68 11---4a +§

T 22.1.2.3 24.1...5 26.1...7 28.1...9 = 29

= 13-12¢  13---106 +13 8y 13---6pB 1340 6

_22.1.2.3 24 .1 5 26.1...7 28.1...9 210.1.11 211
etc.

And the last terms of the letters P, Q, R, S etc. can represented in short form
as follows

am pm ym om em {m
2-37 4.5 6-77 897 10-11" 12-13°

XXIX. But to investigate how these letters P, Q, R, S etc. proceed, let us
subtract a multiple of it from the preceding one so that the first terms are
cancelled, and since the letter O = 1 precedes those letters, we will have:
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3m . pm
- =y
5m mm ym _ m ym

R=3Q="1%9T67 1n'ter

S_@R__7m3 +3m2_5m

12 128-9 16-5 8.9
T_97ms__7m4+17m3_7m2+ em

127 1289 64-3-5 8.-9.-5 10-11
V_llmT__5'7-11m5+451m4_ 121m3 7159m? ~ fm

2 - 2048 - 27 512.27 2048-27-5 128-27-5-7 12-13°

Therefore, if we now consider these forms with more attention and, for the
sake of brevity, put:

23 % 457 6.7 '’ 8.9
we will detect the following sufficiently simple law in our letters P, Q, R etc:

am ! ﬂ—m—ﬁl, am ! om 5t ete.,



1

lel = 0

3 0.

szlP—ki;é[Sl = 0

5 . 543 . 5.4.3.2.1,

b P _ _

149+ 153F 123457 0

7 L. 765, 763 o 761,

18R 153PQ- 15 7 P70 = 0

9 9...5 9...5 9...3 9...1

Z S lR_ 1 lp_ 1 _

14 +1..3‘B 1---5 TR+ 1...75 1...9¢ 0

11, 11---9 , 1.7 115 0 1123, 111,

1“T+1...3ﬁ5 1...5 TR+ 1..75Q 1...18P+1...11g
etc.

But these new letters al, ,Bl, 71, 61 etc. from the preceding ones follow this
law:

al — % = 0

Bl -3 .31..22~3”‘1 + 24m5 = 0

“Y1_22-51'-42-3[31 ;4'.41.3.-@“1 - 26m7 = 0

51_22-71..6 371+%51_%“1+ % = 0

el - %51 + %71 - %51 + 221.::-29”‘1 - 2107?.111 =0

Therefore, I now have to believe to have answered the question on that
extraordinary series, that I have contemplated, completely, whence I will now
present the answer in short form here.

PROBLEM

Having propounded this indefinite progression:
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Mo qymer M=)

m

m(m—1)(m—2)

1) ( o 2)m+/\ .

1-2 1-2-3

to assign its sum, if A was an arbitrary positive integer.

SOLUTION

(x —3)" A Letc.

Let the letters 2, B, €, © etc. denote the Bernoulli numbers such that:

m

Q

Q

1 1 1 3 5
y Ty T *Tw T
691 35 3617 . 43867
210’ 6_7’ H= 307 @
1222277 854513
110 '/ 6

1181820455 ot — 76977927

546 ' - 2
23749461029 x = 8615841276005

30 ’ - 462 ’
84802531453387 ~90219075042845

170 ’ N 6

etc.

I observed that these numbers proceed in such a way that
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oo !
2
4 92
=373
6 2B
o 8 2¢ 8-7-6 %;2
T2 3 2.-3-4 5
@_Ezmv 10-9-8 2B¢
T2 3 2.3-4 5
%_Ezm@ 12-11-10 28D  12-11-10-9-8 ¢&¢
2 3 2-3-4 5 2.-3-4-5.6 7
@—EZ% 14-13-12 28B¢ 14-13-12-11-10 2¢D
2 3 2.3-4 5 2.-3-4-5-6 7
etc.
Hence now find numbers P, Q, R, S etc. that
1%0m
P =
1-2-3
0- 3m  3-2-1Bm
S 1-2-3 1-2-3-4-5
R — 5Am _5~4'3-‘Bmp 4...1¢m
S 1-2-3 1-2-3-4-5 1.2--.7
79m 7-6-5-Bm 7..-3Cm 71D
S_1-2-3R_ 1-2---5 Q+ 1-2---7 P_1-2 9
etc.

where the law of progression also is perspicuous.
Having found this series, the sum s in question will be expressed this way:
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<A+1><A+;>...(A+m):(x_’:y A1) ()
p A S g
A B8 myse
PR BT myes
ete.

where one should note, if the number m is not an integer, that the value of the
product

A+1DA+2)--- (A +m)

can be defined through other artifices explained on another occasion.

COROLLARY 1

If instead of the Bernoulli numbers we want to introduce the related ones,
which I used for the sums of the powers of the reciprocals, and denote them

_1lp_1 ~_1 _ 1 _ 1
by the letters A, B, C, D etc. that A = ¢, B = 55, C = g55, D = 355, E = 53555,
since these numbers depend on the first in such a way that

1.2.3 1.---5 1...7
=——B, ¢= P C etc,

but are connected to each other in such a way that:

5B =2A% 7C=4AB, 9D =4AC + 2BB,
11E = 4AD + 4BC, 13F = 4AE +4BD +2CC etc.,

then from these numbers the letters P, Q, R, S etc. will be determined as
follows:
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2
0= 31‘;111 B 3-22-3le
R — 5ng_ 5'42-33Bmp N 5-4~2'5'1Cm
5 — 7z;mR _ 7.62-353mQ+ 7.6.2.5.3Cmp_ 7-6;;1Dm

COROLLARY 2

If for the various values of the number A we indicate the sum of the pro-
pounded progression by the sign [(A) and now for A successively write the
numbers 0, 1, 2, 3, 4 etc., for these cases the sums [(0), [(1), [(2), [(3) etc.,
for the sake of brevity having put x — % = y, will be expressed the following
way:
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J(0)

=1

U

3.4:[.((2”)”2) =y’ +P

4-5--f-((3n)1+3) =y +3Py

5.6..f.((i+4) =y* +6Py* +Q
6.7.‘.[.((5,1)1%) =y° + 10Py’ + 5Qy
7.8..f.(<6,,)1+6) = y° + 15Py* + 15Q% + R

etc.

COROLLARY 3

Therefore, hence these sums can be defined from the preceding ones as follows
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——v /(0

"2y py + 0D )

M3y pay + D),

"ty e+ UG D ) - I D o)

Sy flay ¢ D) gy OB 0D g g

m2_6 Jio) + DG pa) - L g ) 4 O e fo

e+ PR A ) - R s @)+ T e )

g [ ) 4 P a9 - R D fa) - (S e )
- R o fo)

which law will become obvious soon to the attentive reader.

CONCLUSION

Now there will be not much difficulty to generalize this task quite substantially,
so that, if ¢ : x denotes an arbitrary function of x, that we can assign the sum
of this series

m(;n; L) p:(x—2)— m(m 112)(1;1 — 2)(p t(x—3).

For, it is perspicuous that this form exhibits the difference of order m of this
progression

s=¢@:x—me:(x—1)+

p:x, ¢:(x—1), ¢:(x—2), ¢:(x—3) etc
For, from that, what I covered in Institutiones Calculi Differentialis pag. 343 *, if
we put ¢ : x =y, one concludes that the differences of the respective orders
are:

'p. 264 in the Opera Onmia Version, i.e. Volume 10 of Series 1
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_dy ddy a3y dty Py
B =y T o T 23de 23448 T2 sae S
d?y  3d% 7d%y 15d°y 31d%y
2., "2 J _ _
MY =02 30 T3 add 34540 3. 6dw
g3y Py bty 25d%y  90ddy 3017y
Y= 0 adx* " 4-5dx5  4-5-6dx6 ' 4---7dx7 '
iy diy 1045 esdy 35047y 17018y
dx4 5dx5 5.6dx6 5-6-7dx7 5..-8dx8
etc.,

since which coefficients are those we had above in paragraph 1V, in like
manner we will understand that the difference of order m or A™y, i.e. the sum
of the propounded series, will be

™y
5= dxm

Aldm—Hy
(m + 1)dxm+1

Bldm+2y B Cldm+3y
(m+1)(m+2)dxm+2  (m+1)---(m+3)dxm+3

+etc.,

which coefficients A!, B!, C! etc. I determined above in paragraph XIII. There-
fore, it will be

_m
m+1 2
B! _om +C-im(mfl)
(m+1)(m+2) 1-2.3 ' 1-2.3-4
Ct . om +10m(m—1)+15m(m—1)(m—2)
(m+1)---(m+3) 1.2.3-4 ' 1.2...5 1-2---6
D! m 105m(m —1)(m —2)  105m(m —1)(m —2)(m — 3)

25m(m —1)
1-2--

(m+1)---(m+4)  1-2.--5 6 1-2---7 + 1-2---8

etc.

m .
Therefore, if we now put ¢ : <x — E) = v, so that v results from v, if one

writes x — 7% instead of y, it will obviously be
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dmo _ dmy B mdm—Hy N mzdm+2y ete

dxm  dxm  2dxmtl " 2. 4dxmt2 v
if which equation is subtracted from that, one will have to do exactly the
same calculations as above. Hence introducing the same letters P, Q, R, S etc.,

which we defined above, we will obtain the following value of the sum s:

B dmo Pdm+20 Qd’”“v Rdm+6v Sdm+80
Codxm 1-2dxmt2 0 1.2 4dxmtd 120 6dxmte T 1.2 8dxmtS

+ etc.

and hence, if one takes

m—+A
y=¢:x=x"" and v:(x—%) ,

manifestly the same summation we found before results, and thus the whole
task reduces to the letters P, Q, R, S etc., whose nature I derived from the
Bernoulli numbers above.

Hence it follows immediately , what has been less obvious before, that, if in
the function y or v the number of dimensions was smaller than the exponent
m, which number certainly has to be a positive integer, then all differentials of
order m and higher vanish and the sum s will be = 0.

Further, hence there is a more clear way to find the values of the letters P,Q,
R, S etc. For, since, having put

_dmy _wd"ly  pd™Zy  yd"y

5= dxm dym+1 dxm+2 dxm+3

+ etc.,

we have
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LA P 1.5 1--6

5o ™ 25m(m—1) 105m---(m—2)  105m---(m —3)

-~ 1.--5 1---6 1---7 1---8
etc.,

but the function y results from the function v = ¢ : (x — %), if in it instead of
x one writes x + %, it will be in general

d”y d"o m d" 1o m?  drt2y m3 A3y
Gt et 2 et 24 den? 246 dantd
whence, if one substitutes the differentials of v for those of y, it will be

d'o m dnJrlU mz dn+2 mS mz m dnJrBU
P rT (E _"‘) g1+ (2 1 +ﬁ> dx+2 (2~4~6 N 2-4’”25_7> g3 et

and so we will have:

+ etc.,
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| 3

2 ‘= 0
L
277136_ 2m.24“+ %ﬁ— y= 0
2477-16-8_ 2.723.6"‘+ 2m,24 - %’Y—i— 5:%
1'2-n;>5~4 5_2'471?46'80‘—1—2-723-6’8 _2711.24’)’4‘1:5—820
etc,;

for, one easily sees that these expressions must vanish alternately.



